This Is What Happens When an AI Agent Runs Our 2025 Autumn Marketing!

Hello, the high temperature in Tokyo has dropped to 16°C, and it's starting to feel very much like autumn. For those unfamiliar with autumn in Japan, this is the season when the leaves on the mountains change from green to orange. The entire mountainside is dyed orange, creating a beautiful and spectacular view. Therefore, I decided to use orange as the background color for this marketing campaign's promotional video. The challenge is: "To devise a campaign to sell cakes to women in Ashiya, an affluent residential area in the Kansai region." What happens when we entrust this task to an AI agent? Let's find out.

 

1. Creating an AI Marketing Agent with "Google Opal"

This time, I'm creating an AI marketing agent using Google Opal (1). As the description says, "Opal, our no-code AI mini-app builder," you can easily develop an AI agent app like the one below.

For this AI agent's development, I only entered the following prompt: "You are an expert in marketing campaigns. You will be given the following information: 1. The product/service to sell, 2. The target customer, 3. The location/region, 4. The time/season of the campaign, 5. The desired brand image color, 6. A photo of the facilitator. Using this information, please create the following: a. A marketing strategy, b. A marketing campaign name, c. A logo based on the name, d. A promotional video featuring the facilitator, complete with BGM."

Just by executing this, you can create a workflow like the one shown above using the AI agent. After that, you just switch to the app and answer questions related to your task, and the marketing campaign is created. Amazing, isn't it!

 

2. Marketing Strategy and Logo

Once you input all the necessary information, you get the results back immediately. First is the marketing strategy. In reality, a more detailed discussion followed. This time, I'll just introduce the beginning. Even though I didn't input very detailed information about the campaign at the initial stage, I think this marketing strategy is well-done.

                  Marketing Strategy

Next is the marketing campaign name and logo. What it generated was a cool, French-style logo. I'd love to try using it sometime.

          Logo

 

3. Three Short Promotional Videos

First, I provide the AI agent with a base image of a woman. Then, using this image as a starting point and based on the created marketing strategy, an approximately 8-second short video is generated. It's exciting to see what kind of video the AI agent will produce. This time, it created three videos with BGM. All of them are based on the theme of "Autumn Cakes." It's hard to pick a winner; they are all excellent. After actually creating the videos, I felt that even 8 seconds is enough to convey the image clearly. Which one did you like the best?

 

What did you think? Although this was just a demo AI agent, I was astonished at what it could accomplish with no code, no programming. It seems like it will become a powerful ally for marketers. Of course, there are limitations, but what I created this time can be done for free with just a Google account. I highly recommend giving it a try. ToshiStats will continue to share more about AI agents. Stay tuned!

You can enjoy our video news ToshiStats-AI from this link, too!

1) Opal is now available in more than 160 countries, Google, 7 Nov 2025

Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

OpenAI vs. Google: Who Has the Right Take on AGI?

Recently, OpenAI CEO Sam Altman commented on YouTube(1) that 'it is plausible that a legitimate AI Researcher will be achieved by March 2028.' Can this really be achieved in such a short time, less than 2.5 years from now? I would like to consider this deeply, comparing it with the statements of Demis Hassabis, CEO of rival company Google DeepMind.

 
  1. Achieving Legitimate AI Researcher by March 2028

As for when Artificial General Intelligence (AGI)—which would surpass human intelligence—will actually be achieved, opinions are divided even among experts. Amidst this, OpenAI CEO Sam Altman commented, referencing the following timeline, that 'It is a plausible that a legitimate AI Researcher will be achieved by March 2028.'"

Of course, this is an internal goal, and he isn't claiming it's AGI. However, if AI can take on the role of a researcher, technological development will accelerate dramatically, and the current industrial structure will likely change completely. I think it's groundbreaking that they have set a timeline for such a high-impact goal. The issue is its feasibility. Although technical points were discussed in this YouTube video, I felt that alone was insufficient to explain its feasibility. There is likely much that cannot be disclosed as it is confidential information, but it would have been better if there had been a more in-depth explanation.

 

2. Current AI Lacks Consistency

At this point, let's introduce the opinion(2) of Google DeepMind CEO Demis Hassabis regarding the realization of AGI. As you know, he is a co-founder of DeepMind and has aimed to develop AGI since its founding in 2010. Despite that extensive experience, he says it will still take 5 to 10 years to achieve AGI. One reason for this is that 'current generative AI exhibits PhD-level capabilities for some tasks, yet at other times, it can make mistakes on simple high school math.' In short, its abilities 'lack consistency.' . 'Consistency' is essential for achieving AGI, and apparently, two or three more breakthroughs will be necessary to get there. I find this to be a rather cautious view. For other points of discussion, please watch the YouTube video(2).

 

3. AI is Steadily Evolving, Step by Step

Although there are differences in their definitions of AGI and their timelines, both parties seem to agree on its eventual realization. We cannot predict when breakthroughs will occur. I believe the only thing we should do is 'prepare for the emergence of AGI.' . Whether it arrives in 2028 or 10 years from now, we need to start preparing now how we can use AGI—considered humanity's greatest invention—to realize a better society, industry, and life. Even as we speak, AI is likely evolving beneath the surface. Our company, ToshiStats, intends to continue discussions in order to successfully incorporate those advancements.



You can enjoy our video news ToshiStats-AI from this link, too!


1) Sam, Jakub, and Wojciech on the future of OpenAI with audience Q&A, OpenAI, 30 Oct 2025

2) Google DeepMind CEO Demis Hassabis on AI, Creativity, and a Golden Age of Science | All-In Summit,  13 Sep 2025





Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

"AGI Is Still a Decade Away" : A Message from a Genius AI Engineer

I recently found an interesting interview video on YouTube. It was an interview with a prominent AI engineer, and the message from it was the shocking statement that "AGI is still a decade away."

While many opinions suggest AGI will be realized in just a few years, his mention of such a long timespan—10 years—seems to have gathered global attention. This time, I'd like to share the key points that caught my attention from the video (1), which is over two hours long, and a subsequent tweet (2) he posted on X. you have a perfect AI tutor, maybe you can get extreme far, the genius today are barely scratching the surface of what a human mind can do,

Andrej Karpathy (left)— “We’re summoning ghosts, not building animals”

 

1. AGI is Still a Decade Away

The timeline for achieving AGI is debated among researchers, but the claim that it will take 10 years feels like a minority opinion, perhaps due to the flood of hype surrounding AI agents.

Of course, he has his reasons for asserting this. His tweet (2) stated: "There is still a lot of work (grunt work, integration work, sensors/actuators to the physical world, social work, safety & security work (jailbreaks, poisoning, etc)) to be done before we get to something that you’d rather hire than a human for any job in the world."

Indeed, AI agents in the world of text, like coding, have only just begun this year. The speculation that it will take a considerable amount of time to achieve an AGI that can also operate with high precision in the real world, including physical interaction, feels very convincing.

 

2. On LLM Agents

I believe this topic is especially important for those who use code assistants. His tweet included a critical comment on the current state: "I live in an intermediate world of collaborating with LLMs, where our pros/cons combine. The industry lives in a future where fully autonomous entities collaborate in parallel to write all the code and humans are useless."

I also feel that "those unfamiliar with AI technology might misunderstand, thinking they can easily build anything just by asking a code assistant." The performance of the latest generative AI like GPT-5 is incredible, but I believe there are still many cases where you can't just delegate 100% of a task to it. A collaborative relationship is still necessary, where the human decides the basic outline and structure, has the AI agent draft the details, and then the human reviews the results.

Once AGI is achieved, human intervention shouldn't be necessary at all, but it makes sense that it will take a considerable time to get there.

 

3. On Education in the AGI Era

Let's approach this final topic with optimism. In the interview, he spoke about the future of education, saying: "Teaching Assistants are currently human, but I think they can be replaced by AI in the future. Even in that case, the overall structure of the course would be devised by myself or the faculty, but perhaps in the future, AGI will even do that."

In fact, my company is also developing an e-learning program. While I am designing the overall structure, an AI avatar is scheduled to deliver the actual lectures. It's not possible to automate everything with current AI agents, but I think everyone can agree on the point that by humans and AI collaborating, we can create wonderful educational programs.

I'd like to close with his words: "If you have a perfect AI tutor, maybe you can get extremely far, the geniuses today are barely scratching the surface of what a human mind can do."

 

What did you think?

I want to note that he is bullish on the realization of AGI itself; it's his opinion on the timeline that differs from the consensus. Although the time until realization may vary, AGI will eventually appear before us.

What I've introduced here is just a tiny fraction of the more-than-two-hour interview. I highly recommend that you all watch this wonderful interview. I'm sure you will find some hints about the future of AGI.

Well, that's all for today. Stay tuned!






You can enjoy our video news ToshiStats-AI from this link, too!


1) Andrej Karpathy — “We’re summoning ghosts, not building animals” ,  Dwarkesh Podcast, 18 Oct 2025

2) X_post, Andrej Karpathy, 19 Oct 2025






Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Your Guide to AI Agents: Insights from Andrew Ng's Latest Course

A new online course called "Agentic AI" (1) has been released by DeepLearning AI. The creator is Andrew Ng, an adjunct professor at Stanford University, who is also famous for his past machine learning-related courses. For me, this is the first course I've taken from him since the Deep Learning Specialization in 2018. I've just completed it, and I'd like to share my thoughts and a recommendation.

 

1. Course Overview

The course is divided into five modules, each consisting of 5-7 short videos (about 5-10 minutes each), a quiz, and coding tasks using jupyter notebook. By passing each assignment, you are ultimately awarded a certificate of completion. The level is listed as intermediate; while a basic knowledge of Python is necessary, I believe that even those without specialized knowledge in AI can progress through the material and naturally come to understand it. The main topics are as follows:

Reflection: AI critiques its own work and iterates to improve quality—like code review, but automated.

Tool Use: Connect AI to databases, APIs, and external services so it can actually perform actions, not just generate text.

Planning: Break complex tasks into executable steps that AI can follow and adapt when things don’t go as expected.

Multi-Agent: Coordinate multiple specialized AI systems to handle different parts of a complex workflow.

Created by Andrew Ng, who teaches at Stanford while concurrently doing practical consulting work, I found the course to have a wonderful balance between theory and practice.

 

2. Reflection and Tool Use

The second and third modules are critical technologies for the future realization of AGI. In particular, "Reflection," where an AI improves itself, is also known as Recursive Self Improvement and is a field being researched worldwide. This module introduces a method that allows even non-experts to incorporate reflection functionality, which I am very eager to try implementing. Additionally, using tools allows a generative AI to incorporate information that is difficult to acquire on its own, thereby enhancing the AI agent's capabilities. Furthermore, this information can be applied to the "Reflection" process, promising a synergistic effect. I'm also keen to implement this and see what kind of information can be integrated.

 

3. Error Analysis

As Andrew Ng states, this fourth module is, in my opinion, the most important and valuable content in the course. Generative AI is excellent, but it is not perfect. There is still a considerable possibility that it will produce incorrect answers. Therefore, to raise its accuracy to a practical level, the course emphasizes the importance of adopting a strategy that quickly identifies the parts of the overall process with the lowest performance and allocates resources to improving those areas. I can certainly see how for a complex AI agent that may contain numerous sub-agents, identifying and prioritizing the reinforcement of its weaknesses is incredibly important in practical applications.

 

So, what did you think? With a flood of AI-related news every day, many people are likely wondering, "How should I proceed with my AI projects from now on?" I believe this course provides a valuable perspective for thinking in the medium to long term. While it is a paid course, it is not as expensive as university tuition, and I highly recommend trying it. Incidentally, because I studied intensively, I was able to receive my certificate in about three days. It's certainly possible for a business professional to complete it over a long weekend.

Well, that's all for today. Stay tuned!

 

You can enjoy our video news ToshiStats-AI from this link, too!


1) Agentic AI, Andrew Ng,  DeepLearning AI, Oct 2025 







Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

The Secret to High-Accuracy AI: An Exploration of Machine Learning engineering agent

In a previous post, I explained Google's research paper, "MLE STAR" (1), and uncovered the mechanism by which an AI can build its own high-accuracy machine learning models. This time, I'm going to implement that AI agent using the Google ADK and experiment to see if it can truly achieve high accuracy. For reference, the MLE STAR code is available as open source (2).

 

1. The Information I Provided

With MLE STAR, humans only need to handle the data input and task definition. The data I used for this experiment comes from the Kaggle competition "Home Credit Default Risk" (3). While the original data consists of 8 files, I combined them into a single file for this experiment. I reduced the training data to 10% of the original, resulting in about 30,000 samples, and kept the original test data of 48,700 samples.

The task was set as follows: "A classification task to predict default." Note that to speed up the experiment, the number of iterative loops was set to a minimum.

                     Task Setup

 

2. Deciding Which Model to Use

MLE STAR uses a web search to select the optimal model for the given task. In this case, it ultimately chose LightGBM. To finish the experiment quickly, I configured it to select only one model. If I had set it to select two, it likely would have also chosen something like XGBoost. Both are models frequently used in data science competitions.

                Model Selection by MLE STAR

It generated the initial script below. As a frequent user of LightGBM, the code looks familiar, but the ability to generate it in an instant is something only an AI can do. It's amazing!

 

3. Identifying Key Code Blocks with "Ablation Studies"

Next, it uses ablation studies to identify which code blocks should be improved. In this case, ablation2 showed that removing Early Stopping worsened the model's performance, so this feature was kept in the training process from then on.

               Ablation Studies Results by MLE STAR

 

4. Iteratively Improving the Model

Based on the ablation studies, MLE STAR decided to improve the model using the following two techniques: K-fold target encoding and binary encoding. These techniques themselves are common in machine learning and are not particularly unusual.

                   K-fold Target Encoding

                     Binary Encoding

This ability to "use ablation studies to identify which code blocks to improve" is likely a major reason for MLE STAR's high accuracy. I look forward to seeing how this functionality evolves in the future.

 

5. The Results Are In. Unfortunately, I Lost.

For its final step, MLE STAR ensembles the models to create the final version. For more details, please see the research paper. It also generates a CSV file with the default predictions, which I slightly modified and promptly submitted to Kaggle. This task is evaluated using AUC, where a score closer to 1 indicates higher accuracy.

The top score is the result I achieved using my own LightGBM model. The score in the red box at the bottom is the one automatically generated by MLE STAR. With a difference of more than 0.01 on both the Public and Private scores, it was my complete defeat.

             Kaggle Prediction Accuracy Evaluation (AUC)

Improving the AUC by 0.01 is quite a challenge, which gives a glimpse into how excellent MLE STAR is. I didn't perform any extensive tuning on my LightGBM model, so I believe my score would have improved if I had spent time tuning it manually. However, MLE STAR produced its result in about 7 minutes from the start of the computation, so from an efficiency standpoint, I couldn't compete.

 
 

So, what did you think? Although this was a limited experiment, I feel I was able to grasp the high potential of MLE STAR. I was truly impressed by the power of its Recursive Self-Improvement, which identifies specific code blocks and improves upon them autonomously.

Here at Toshi Stats, I plan to continue digging into MLE STAR. Stay tuned!





You can enjoy our video news ToshiStats-AI from this link, too!




1) MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
Jaehyun Nam1 2 *, Jinsung Yoon1, Jiefeng Chen1, Jinwoo Shin2, Sercan Ö. Arık1 and Tomas Pfister1, Google Cloud1, KAIST2,  23, Aug 2025

2) Machine Learning Engineering with Multiple Agents (MLE-STAR) , Google

3) Home Credit Default Risk, kaggle



Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Is an AI Machine Learning Assistant Finally a Reality? I Looked Into It, and It's Incredible!

I often build machine learning models for my job. The process of collecting data, creating features, and gradually improving the model's accuracy takes time, specialized knowledge, and programming skills in various libraries. I've always found it to be quite a challenge. That's why I've been hoping for an AI that could skillfully assist with this work, and recently, a potential candidate has emerged. I'd like to take a deep dive into it right away.

 
  1. A Basic Three-Layer Structure

This AI assistant is called MLE-STAR, and according to a research paper (1), it has the following structure. Simply put, it first searches the internet for promising libraries. Next, after writing code using those libraries, it identifies which parts, called "code blocks," should be improved further. Finally, it decides how to improve those code blocks. Let's explore each of these steps in detail.

 

2. Selecting the Optimal Library with a Search Function

To create a high-accuracy machine learning model, you first need to decide "what kind of model to use." This means you have to select a library to implement the model. This is where the search function comes in. For example, in a finance task to calculate default probability, many methods are possible, but gradient boosting is often used in competitions like Kaggle. I also use gradient boosting in most cases. It seems MLE-STAR can use its search function to find the optimal library on its own, even without me specifying "use gradient boosting." That's amazing! This would eliminate the need for humans to research everything, leading to greater efficiency.

 

3. Finding Where to Improve the Code and Steadily Making Progress

Once the library is chosen and a baseline script is written, it's time to start making improvements to increase accuracy. But it's often difficult to know where to begin. MLE-STAR employs an ablation study to understand how accuracy changes when a feature is added or removed, thereby identifying the most impactful code block. This part of the process typically relies on human experience and intuition, involving a lot of trial and error. By using MLE-STAR, we can make data-driven decisions, which is incredibly efficient.

 

4. Iterating Until Accuracy Actually Improves

Once the code block for improvement is identified, the system gradually changes parameters and confirms the accuracy improvements. This is also done automatically within a loop, without requiring human intervention. The accuracy is calculated at each step, and as a rule, only changes that improve performance are adopted, ensuring that the model's accuracy steadily increases. Incredible, isn't it? In fact, a graph comparing the performance of MLE-STAR with past AI assistants shows that MLE-STAR won a "gold medal" in approximately 36% of the tasks, highlighting its superior performance.

 

So, what did you think? This new framework for an AI assistant looks extremely promising. In particular, its ability to identify which code blocks to improve and then actually increase the accuracy is likely to become even more powerful as the performance of foundation models continues to advance. I'm truly excited about future developments.

Next time, I plan to apply it to some actual analysis data to see what kind of accuracy it can achieve. Stay tuned!




You can enjoy our video news ToshiStats-AI from this link, too!



1) MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
Jaehyun Nam1 2 *, Jinsung Yoon1, Jiefeng Chen1, Jinwoo Shin2, Sercan Ö. Arık1 and Tomas Pfister1, Google Cloud1, KAIST2,  23, Aug 2025



Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

A Sweet Strategy: Selling Cakes in Wealthy Residential Areas !

Has everyone ever thought about starting a cake shop? As a cake lover myself, I often find myself wondering, "What kind of cake would be perfect?" However, developing a concrete business strategy is a real challenge. That's why this time, I'd like to conduct a case study with the support of an "AI marketing-agency." Let's get started.


1. Selling Cakes in an Upscale Kansai Neighborhood

The business scenario I've prepared for this case is a simple one:

Goal: To sell premium fruit cakes in the Kansai region.

  • Cake Features: Premium shortcakes featuring strawberries, peaches, and muscat grapes.

  • Target Audience: Women in their 20s to 40s living in upscale residential areas.

  • Stores: 3 cafes near Yamate Dentetsu Ashiya Station, 1 cafe near Kaigan Dentetsu Ashiya Station.

  • Direct Sales Outlet: 1 store inside the Yamate Dentetsu Ashiya Station premises.

  • Branding: The brand's primary color will be blue, with the website and logo also unified in blue.

  • Current Plan: In the process of planning a sales promotion for the autumn season.

From here, what kind of concrete business strategy can we derive? First, I'll input the business scenario into the AI marketing-agency.

The first thing it does is automatically generate 10 cool domain names.

It's hard to choose, but for now, I'll proceed with branding using "PremiumAshiyaCake.com".

 

2. A Practical Business Strategy

Now, let's ask the AI marketing-agency to formulate a business strategy for selling our premium fruit cakes in Kansai. When prompted to input the necessary information, I re-entered the business scenario, and the following business strategy was generated in about two minutes. Amazing!

It's a long document, over five pages, so I can't share it all, but here is the "Core of the Marketing Strategy."

  • Overall Approach: Direct Response that Inspires Aspiration

    • We will build an aspirational, luxury brand image through beautiful content, and then convert that desire into immediate store visits using precisely targeted calls-to-action (CTAs).

  • Core Message and Positioning:

    • Positioning Statement: For the discerning women of Kansai, Premium Ashiya Cake is the patisserie that transforms a moment into a cherished memory with its exquisitely crafted seasonal shortcakes.

    • Tagline / Core Message: "Premium Ashiya Cake: An exquisite moment, crafted for you."

  • Key Pillars of the Strategy:

    • Visual Elegance and a "Blue" Signature: All visuals must be of professional, magazine-quality. The brand color "blue" will be used as a sophisticated accent in styling—such as on blue ribbons, parts of the tableware, or as background elements—to create a recognizable and unique visual signature.

    • Hyper-local Exclusivity: Marketing efforts will be geographically and demographically laser-focused on the target audience residing in Ashiya and its surrounding affluent areas. This creates an "in-the-know" allure for locals.

    • Seasonal Storytelling: Treat each season's campaign as a major event. We will build a narrative around the star ingredients, such as Shine Muscat grapes from a specific partner farm, to build anticipation and justify the premium price point.

This is wonderfully practical content. The keywords I provided—"blue," "Ashiya," and "muscat"—have been skillfully integrated into the strategy.

 

3. The Logo is Excellent, Too—This is Usable!

Because I specified in the initial business scenario that I wanted to "unify the color scheme based on blue," it created this cool logo for me. It really looks like something I could use right away. Google's image generation AI, Imagen 3.0, is used here. The quality of this AI is always highly rated, so it's no surprise that the logo generated this time is also of outstanding quality.

 

So, what did you think of the AI marketing-agency? The business strategy is professional, and it's amazing how it automatically created the domain names and logo with such excellent results. Although I couldn't introduce it this time, it also includes a website creation feature. It's surprising that a tool this high-performance is actually available for free. A development kit called "Google ADK" is provided as open-source, and the AI marketing-agency from this article can be downloaded and used for free as Sample (1). For those who can use Python, I think you'll get the hang of it with a little practice. The operational costs are also limited to the usage fees for Google Gemini 2.5 Pro, so the cost-effectiveness is outstanding. I encourage you all to give it a try.

Please note that this story is a work of fiction and does not represent anything that actually exists. That's all for today, stay tuned!

 

You can enjoy our video news ToshiStats-AI from this link, too!

1) Marketing Agency, Google, May 2025



Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Unlocking Sales Forecasts: Can GPT-5 Reveal the Most Important Data?

Have you ever found yourself in marketing, wanting to predict sales and gathering a ton of data? For example, let's say you have sticker sales data (1) like the set below. The num_sold column represents the number of units sold. This is actually a large dataset with over 200,000 entries. So, among these data columns (which we call "features"), which one is the most important for predicting sales? They all seem important, and it's impossible to check all 200,000 records one by one. So, let's try asking the generative AI, GPT-5.

                         Sticker sales data

 

1. Asking GPT-5 with a Prompt

To identify the important features for a prediction, you first have to create a predictive model. This is a task that data scientists perform all the time. However, they usually create these models by coding in Python, which can be a high barrier for the average business person. So, isn't there an easier way? Yes, and this is where prompts come in handy. If you can give instructions to GPT-5 with a prompt, no coding is necessary. Here is the prompt I created for this task.

     data & prompt

Key points of the prompt:

  • Use HistGradientBoostingRegressor from sklearn.

  • Evaluate the error using mean_absolute_percentage_error.

  • Split the data into train-data and test-data at an 80:20 ratio.

  • Display the top 10 feature importances with their original variable names.

  • Print the results as numerical output.

By getting the top 10 feature importances, we can understand which data column is the most significant. I won't explain the predictive model itself this time, so for those who want to dive deeper, please refer to a machine learning textbook.

 

2. The Code Actually Being Executed

Based on the prompt above, GPT-5 generated the following Python code on its own. It might look complicated to non-specialists, but rest assured, we don't have to touch Python at all. However, we can review this code to see how the calculation is being done, so it's by no means a black box. I believe this transparency is very important when using GPT-5 in a business context.

                 GPT-5's code for building the prediction model

 

3. "Product" Was the Most Important!

Ultimately, we got the following result.

Feature Importance Ranking

A higher "importance" value in the table above means the feature is more significant. This analysis revealed that "product" was overwhelmingly important. It seems that thinking about "what is selling" is essential. This is followed by "store" and "country". This suggests that considering "in what kind of store" and "in which country" is also crucial.

                     feature importance ranking

 

So, what did you think? This time, we instructed GPT-5 with a prompt to calculate which features are most important for predicting sales. It's true that you might run into errors along the way that GPT-5 has to correct itself, so I felt that having some basic knowledge of machine learning is beneficial. However, we were able to get the result without the user having to write any Python, which means marketing professionals can start trying this out today. I hope you can use the method we introduced today in your own marketing work. That's all for now. Stay tuned!

 


You can enjoy our video news ToshiStats-AI from this link, too!


1)Forecasting Sticker Sales, kaggle, January 1,2025



Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

How to Turn GPT-5 into a Pro Marketing Analyst with AI Agents!

A while back, I introduced a guide to prompting GPT-5, but it can be quite a challenge to write a perfect prompt from scratch. Not to worry! You can actually have GPT-5 write prompts for GPT-5. Pretty cool, right? Let's take a look at how.

 

1. Using GPT-5 to Do a Marketer's Job

I have some global sales data for stickers(1). Based on this data, I want to develop a sales strategy.

                 Global Sticker Sales Records

In a typical company, a data scientist would analyze the data, and a marketing manager would then create an action plan based on the results. We're going to see if we can get GPT-5 to handle this entire process. Of course, this requires a good prompt, but what kind of prompt is best? This is where it gets tricky. The principle I always adhere to is this: "Data analysis is a means, not an end." There are many data analysis methods, so the same data can be analyzed in various ways. However, what we really want is a sales strategy that boosts revenue. With this in mind, let's reconsider what makes a good prompt.

It's a bit of a puzzle, but I've managed to draft a preliminary version.

 

2. Using Metaprompting to Improve the Prompt with GPT-5

Now, let's have GPT-5 improve the prompt I quickly drafted. The image below shows the process. The first red box is my draft prompt.

                    Metaprompt

The second red box explicitly states the principle: "Perform data analysis with the goal of creating a Marketing strategy." When you provide the data and run this prompt, GPT-5 creates the improvement suggestions you see below, which are very detailed. I actually ran this process twice to get a better result.

                   Final Prompt

 

3. The Result: GPT-5 Generates MARKETING Strategy!

Running the final prompt took about a minute and produced the following output. The detailed analysis and resulting insights are directly connected to marketing actions, staying true to our initial principle. It's fantastic.

The output is concise and perfect for busy executives. Creating this content on my own would likely take an entire day, but with GPT-5, the whole process—including the time it took to draft the initial prompt by myself —takes only about 30 minutes. This really shows how powerful GPT-5 is.

 

What do you think? This time, we explored a method for getting GPT-5 to improve its own prompts. This technique is called Metaprompting, and it's described in the OpenAI GPT-5 Prompting Guide (2).

I encourage you to try Metaprompting starting today and take your AI agent to the next level. That's all for now! Stay tuned!

 



You can enjoy our video news ToshiStats-AI from this link, too!

 

Copyright © 2025 Toshifumi Kuga. All right reserved

1)Forecasting Sticker Sales, kaggle, January 1,2025

2) GPT-5 prompting_guide, OpenAI, August 7, 2025


Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Let's Explore the Best Practices for Crafting GPT-5 Prompts!

We are already hearing from many in the field that with the arrival of GPT-5, "the writing style is different from GPT-4o and earlier" and "its performance as an agent is on another level." Here, we will build upon the key points from OpenAI's "GPT-5 Prompt Guide (1)" and organize, from a practical perspective, "how to write prompts to stably reproduce desired behaviors." The following three keywords are key:

  1. GPT-5 acts very proactively as an AI agent.

  2. Self-reflection and guiding principles.

  3. Instruction following with "surgical precision."

Let's delve into each of these.

 




 

1. GPT-5 acts very proactively as an AI agent.

GPT-5's enhanced capabilities in tool-calling, understanding long contexts, and planning allow it to proceed autonomously even with ambiguous tasks. Whether you "harness" or "suppress" this capability depends on how you design the agent's "eagerness").


1-1. Controlling Eagerness with Prompts

To suppress eagerness, intentionally limit the depth of exploration and explicitly set caps on parallel searches or additional tool calls. This is effective in situations where processing time and cost are priorities, or when requirements are clear and exploration needs to be minimized.

To enhance eagerness, explicitly state rules for persistence, such as "Do not end the turn until the problem is fully resolved" and "Even with uncertainty, proceed with the best possible plan." This is suitable for long-duration tasks where you want the agent to see them through to completion with minimal check-ins with the user.

Practical Snippet (To suppress eagerness):

<context_gathering>
Goal: Reach a conclusion quickly with minimal information gathering.
Method: A single-batch search, starting broad and then narrowing down. Avoid duplicate searches.
Budget: A maximum of 2 tool calls.
Escape: If a conclusion is reasonably certain, accept minor incompleteness to provide an early answer.
</context_gathering>

Practical Snippet (To encourage eagerness):

<persistence>
Do not end the turn until the problem is completely resolved.
Reason through uncertainty and continue with the best possible plan.
Minimize clarifying questions. Adopt reasonable assumptions and state them later.
</persistence>

1-2. Visualize with a "Tool Preamble"

When the agent outputs a long rollout during execution, having it first provide a brief summary—explaining the objective, outlining the plan, noting progress, and confirming completion—makes it easier for the user to follow along and creates a better user experience.

Recommended Snippet:

<tool_preambles>
First, restate the user's goal in a single sentence. Follow with a bulleted list of the planned steps.
During execution, add concise progress logs sequentially.
Finally, provide a summary that clearly distinguishes between the "Plan" and the "Actual Results."
</tool_preambles>
 
 

2. Self-reflection and Guiding Principles

GPT-5 excels at "internally refining" the quality of its output through self-reflection. However, if the criteria for judging quality are not established beforehand, this reflection can become unproductive. This is where guiding principles and a private rubric are effective.


2-1. Provide a "Self-Grading Scorecard" with a Private Rubric

For zero-to-one generation tasks (e.g., creating a new web app, drafting specifications), have the model internally create a scorecard with 5-7 evaluation criteria. Then, have it repeatedly rewrite and re-evaluate its output based on these criteria.

Rubric Generation Snippet:

<self_reflection>
Define the conditions that a world-class deliverable should meet across 5-7 categories (e.g., UI quality, readability, robustness, extensibility, accessibility, accountability). Score your own proposal against these criteria, identify shortcomings, and redesign. The rubric itself should not be shown to the user.
</self_reflection>

2-2. Reduce Inconsistency with Guiding Principles

For ongoing development or modifying existing code, first provide the project's conventions by clearly stating its design principles, directory structure, and UI standards. This ensures that the model's suggested improvements and changes integrate naturally with the existing culture.

Guiding Principles Snippet (Example):

<guiding_principles>
Clarity and Reusability: Keep components small and reusable. Group them and avoid duplication.
Consistency: Unify tokens, typography, and spacing.
Simplicity: Avoid unnecessary complexity in styling and logic.
</guiding_principles>

2-3. Separately Control Verbosity and Reasoning Effort

GPT-5 can control its verbosity (the length of the final answer) and its reasoning_effort (the depth of thought) independently. This allows for context-specific overrides, such as "be concise in prose, but provide detailed explanations in code." The guide introduces a practical example of prompt tuning by Cursor, which is worth checking out. A useful tip for fast mode (minimal reasoning) is to require a brief summary of its thinking or plan at the beginning to assist its process.

 
 


3. GPT-5's Instruction Following has "Surgical Precision"

GPT-5 is extremely sensitive to the accuracy and consistency of instructions. Contradictory requests or ambiguous prompts waste reasoning resources and degrade output quality. Therefore, it is crucial to "structure" your instruction hierarchy to prevent contradictions before they occur.



3-1. Design to Avoid Contradictions

Take the example of a healthcare administrator scheduling a patient appointment based on symptoms. "Exceptions," such as altering preceding steps only in emergencies, must be clearly stated so they do not conflict with standard procedures.

  • Bad Example: The instructions "Do not schedule without consent" and "First, automatically secure the fastest same-day slot" coexist.

  • Correct Example: When "Always check the profile" and "In an emergency, immediately direct to 911" coexist, the exception rule is declared first.

OpenAI offers the following warning:

We understand that the process of building prompts is an iterative one, and that many prompts are living documents, constantly being updated by different stakeholders. But that’s why it is even more important to thoroughly review for instructions that are phrased improperly. We have already seen multiple early users discover ambiguities and contradictions within their core prompt libraries when they did such a review. Removing them dramatically streamlined and improved GPT-5's performance. We encourage you to test your prompts with our Prompt Optimizer tool to identify these kinds of issues.

 
 

How was that? In this article, we explored key points for prompt design from OpenAI's GPT-5 Prompt Guide (1). GPT-5 is a "partner in practice," combining powerful autonomy with precise instruction following. Try incorporating the points discussed today into your prompts and take your AI agents to the next level. That's all for today. Stay tuned!

 
 

Copyright © 2025 Toshifumi Kuga. All right reserved

1) GPT-5 prompting_guide, OpenAI, August 7, 2025

You can enjoy our video news ToshiStats-AI from this link, too!

 

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Unexpected Weakness Revealed! What Happened When I Tried Image Analysis with the New "GPT-5" Generative AI from OpenAI

OpenAI's New Generative AI "GPT-5" Has Arrived. I Tried Image Analysis and Discovered a Surprising Weakness! (1)

The long-awaited new generative AI, "GPT-5," has been released by OpenAI. I believe its multimodal capabilities have also improved, so I decided to upload a few images and run some simple tests. Let's get started.

 

1.The car is stopped, but why is it stopped?

The image shows a Mazda passenger car on display inside a train station (Hiroshima Station). This is just an exhibit car, but I thought GPT-5 could answer if it understood the background. It seems to have correctly recognized that this is an indoor space and not a public road. The answer was correct.

 

2.How many minutes until departure?

This is a common scenario when traveling. I asked how many minutes until the train I was planning to board, "Nozomi 104," would depart. The key was whether GPT-5 could understand that the large displayed time was the current time. This time, it also worked out well.

 

3.Which way should I go for car number 4?

This is another common travel situation. At a Shinkansen platform at Tokyo Station, I wanted to go to car number 4, and I asked which way to go, left or right, based on the sign above. The result was correct.

 

4. I want to go to Shin-Osaka Station. How many trains can I take?

The last one is a difficult question. This is a Shinkansen information board at Tokyo Station, and it shows 16 trains in total. When I asked, "I want to go to Shin-Osaka Station," it replied with 8 trains. This is the number of trains with Shin-Osaka as the destination, which is a bit of a simplistic answer. For example, a Shinkansen bound for Hakata also stops at Shin-Osaka. It seems that GPT-5, in its default mode, didn't think that far ahead.

To redeem itself, I switched to "Thinking" mode and tried one more time. As expected, it considered the intermediate stops and answered 14 trains, excluding the trains bound for Nagoya. That's the correct answer.

 

So, what do you think? Overall, the performance is excellent. GPT-5 is said to use a "real-time router" that defaults to "Auto" and automatically switches to "Thinking" for difficult tasks. However, since it's just been released, this switching might not always work perfectly. As the examples above show, although "Thinking" mode was appropriate in some cases, it didn't activate automatically. Therefore, if you feel something is "a little off," I recommend switching to "Thinking" mode. I hope it will become more stable over time. I look forward to covering GPT-5 again in the future. Stay tuned!





Copyright © 2025 Toshifumi Kuga. All right reserved

1) GPT-5 System Card., OpenAI, August 7, 2025


Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.




Prompt Optimization: The Secret to Building Better AI Agents?

The instructions that humans write for generative AI are called "prompts." There are many books and blogs out there that offer guidance on how to write them. Many of you have probably tried, and it's surprisingly difficult, isn't it? While no programming language is required, you have to go through a lot of trial and error to get the output you want from a generative AI. This process can be quite time-consuming, isn't well-systematized, and you often have to start from scratch for each new task.

So, this time, we'd like to experiment with "what happens if we have a generative AI write the prompts for us?" Let's get started.

 


1. Prompt Optimization

In 2023, Google DeepMind released a research paper titled "LARGE LANGUAGE MODELS AS OPTIMIZERS"(1).

This paper explored the use of LLMs to optimize prompts, and it seems to have worked well for several tasks. While a human writes the initial prompt, subsequent improvements are delegated to the LLM (the optimizer). The LLM is also responsible for judging whether the result was successful or not (the evaluator), meaning this approach can be applied even without labeled data that provides the correct answers. This is very helpful, as tasks involving generative AI often lack labeled data. Below is a flowchart of this process, which is effectively the automation of prompt engineering. This is professionally referred to as "prompt optimization." The specific method we adopted for this experiment is called OPRO (Optimization by PROmpting).






2. Experiment with a Customer Complaint Classification Task

Similar to our blog post on July 26th, we set up a task to predict which financial product a bank's customer complaint is about. We used an LLM to solve a classification task where it selects one of the following six financial products. We used gemini-2.5-flash for this experiment, with a sample size of 100 customer complaints.

  • Mortgage

  • Checking or savings account

  • Student loan

  • Money transfer, virtual currency, or money service

  • Bank account or service

  • Consumer Loan

In this experiment, the LLM handled the prompt generation, but a meta-prompt was necessary to further improve the resulting prompts. I wrote the meta-prompt as follows. Essentially, it tells the LLM to "please further improve the resulting prompt."

We had the LLM generate 20 prompts, and the results are shown below. The final number is the accuracy. An accuracy of 0.8 means 80 out of 100 cases were correct. Since this data came with labeled data, calculating the accuracy was easy.

We adopted the second prompt from the list, which had the best accuracy of 0.89 in this experiment. When we ported this prompt to our regular experimental environment and ran it, the accuracy exceeded 0.9, as shown below. We've done this task many times before, but this is the first time we've surpassed 0.9 accuracy. That's amazing!

 






3. What Does the Future of Prompt Engineering Look Like?

As you can see, it seems possible to optimize prompts by leveraging the power of generative AI. Of course, when considering cost and time, the results might not always be worth the effort. Nevertheless, I feel there's a strong need for prompt automation. Researchers worldwide are currently exploring various methods, so many things that aren't possible now will likely become possible in the near future. Prompt engineering techniques will continue to evolve, and I'm looking forward to these technological developments and plan to try out various methods myself.

 

So, what did you think? The ability of an AI agent to fully utilize the power of generative AI and improve itself without human intervention is called "Recursive-self-improvement." At ToshiStats, we will continue to provide the latest updates on this topic. Please look forward to it. Stay tuned!

 

Copyright © 2025 Toshifumi Kuga. All right reserved

1) LARGE LANGUAGE MODELS AS OPTIMIZERS Chengrun Yang Xuezhi Wang Yifeng Lu Hanxiao Liu Quoc V. Le Denny Zhou Xinyun Chen , Google DeepMind

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Back to object detection after a break! Generative AI shows no signs of slowing down

It's remarkable to see the rapid progress of generative AI. Recently, the improvement in multimodal capabilities, which process information like images and videos in addition to natural language, has been outstanding. This is sometimes referred to as AI's "spatial understanding." Let's briefly experiment with what kind of information generative AI can extract from images to check the performance of the current Gemini 2.5-flash model.



1. Google AI Studio

I'll be using the familiar generative AI development platform, Google AI Studio (1), again. I've prepared a no-code app for spatial understanding. It can display the number of identified objects and their coordinates. For example, for "hands," it shows them like this. It accurately identifies two hands.

 

2. Generative AI Understands the Meaning of Words and Can Identify Objects

So, what about a task that requires understanding the positional relationship between a flower and a hand, such as "a hand holding a flower"? The result is a successful identification.

Conversely, what about a task like "a hand not holding a flower"? The result is also a successful identification. This is impressive; it identified it with no problem.

Next, can it identify an object based solely on its positional relationship? Let's ask it to identify "what's on the hamburg." It easily answered "fried egg." While this generative AI, Gemini, has been touted for its high-performance image processing since its debut in December 2023, I'm honestly surprised it can do this much.

 

3. Can It Identify Station Names from a Sign?

Let's try a slightly more difficult task. This is a section of a subway station sign in Kuala Lumpur, the capital of Malaysia. Let's see if it can identify the three stations between Ampang Park and Chan Sow Lin from this image of the sign.

The result was that it accurately identified the three stations. This is a task that requires it to not only read the text in the image correctly but also understand the positional relationship of the stations. It accomplished this without any difficulty. I have nothing more to say; it's amazing!

 

What do you think? I'm sure many of you are surprised by the high level of spatial understanding. Generative AI is still in its early stages, so its performance will continue to improve, and accordingly, its practical applications will expand. It's something to look forward to. Also, I created this AI app on Google AI Studio without writing any code. Google AI Studio is very user-friendly and high-performing. I encourage you all to try it. Toshi Stats will continue to challenge itself to build various AI apps. Please stay tuned!

 
 

Copyright © 2025 Toshifumi Kuga. All right reserved

1) Google AI Studio

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

I tried creating and implementing an AI app with no-code on Google AI Studio, and it was amazing!

Google has been rapidly releasing generative AI and related products recently, with Google AI Studio (1) particularly standing out as a developer platform. It integrates the latest image and video generation AI, truly embodying a multimodal platform. What's more, it's free up to a certain limit, making it a powerful ally for startups like ours. So, let's actually create an AI application with this platform!


1. Google AI Studio Portal

Below is the Google AI Studio portal. It has so many features that an AI beginner might get confused without prior knowledge. I suppose that's why it's a developer-oriented platform. By clicking the button in the red box, you'll be taken to a site where you can create an application simply by writing a prompt.

Google AI Studio

Here's the prompt I used this time.

"As a 'Complaint Categorization Agent,' you are an expert at understanding which product a customer is complaining about. You can select only one product from the complaint. Comprehensively analyze the provided complaint and classify it into one of the following categories:

  • Mortgage

  • Checking or savings account

  • Student loan

  • Money transfer, virtual currency, or money service

  • Bank account or service

  • Consumer Loan

Your output should be only one of the above categories. All samples must be classified into one of these classes. Results for all samples are required. Create a GUI that adds the ability to input a CSV file of customer complaints and generate a graph showing the distribution of customer complaint classes. Add features to the GUI to add labeled data independently of the customer complaint CSV file, calculate and display accuracy, and display a confusion matrix of the results."

Just by typing this prompt into the box and running it, the application described below is created. I didn't use any coding like Python at all. It's amazing!



2. Tackling a Real Classification Task with the Created App

After two or three attempts, the final application I built is shown below. It handles the task of classifying bank customer complaints by financial product. This time, I've set it to six types of financial products, but generative AI can achieve high accuracy even without prior training, so it's possible to classify many more classes if desired.

Input Screen

We import customer complaints via a CSV file. This time, I'll use 100 complaints. Furthermore, if ground truth data is available, I've added functionality to output accuracy and a confusion matrix. Below are the actual classification results. The distribution of the six financial products is displayed. It seems this customer complaint data primarily concerns mortgages.

Class Distribution

Here's the crucial classification accuracy. This time, we achieved over 80% accuracy, at 83%, without any prior training. It's incredible!

Classification accuracy

The confusion matrix, often used in classification tasks, can also be displayed. This not only provides a numerical accuracy but also shows where classification errors frequently occur, making it easier to set guidelines for improving accuracy and enabling more effective improvements.

Confusion Matrix

 

3. Agent Evaluation

What I realized when creating this app was that if some evaluation metric is available, the quality of discussions for subsequent improvements deepens. Trying with just a few samples won't give a good grasp of the generative AI's behavior. Ideally, preparing at least 10, and ideally 100 or more, samples with corresponding ground truth data, and having the AI app output evaluation metrics, would enable effective accuracy improvement suggestions. This theme is called "Agent evaluation," and I believe it will become essential for building practical AI applications in the future.

 

What do you think? Despite not doing any programming at all this time, I was able to create such an amazing AI application. Google AI Studio integrates perfectly with Google Cloud, allowing you to deploy your app to the cloud with a single button and use it worldwide. Toshi Stats will continue to challenge ourselves by building various AI applications. Stay tuned!

 

Copyright © 2025 Toshifumi Kuga. All right reserved

1) Google AI Studio

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

Prompt Engineering Mastery: The Fast Track

Since the debut of ChatGPT at the end of November 2022, the way we give instructions to computers has completely changed. Previously, programming languages like Python were necessary, but with ChatGPT, it's now possible to give instructions using the "natural languages" we use every day, such as English and Japanese. These natural language instructions are called "prompts." It has been about two and a half years since prompts came into use, and many people are likely experimenting with various prompts daily. As this is a new technology, systematically learning it can be challenging. However, Google has released a free white paper (1) of over 60 pages on the topic, so let's explore it for some hints. Let's begin!

 

1. Grasping the Basic Concepts

We often see simple prompt guides like "The Top 20 Prompts You Need to Know." However, it's impossible to effectively interact with a generative AI, which holds a vast amount of knowledge, with just about 20 prompts. While it may seem like a shortcut, memorizing a recommended list of 20 prompts each time is laborious and inefficient. Various studies are being conducted on how to write prompts, and the theoretical background is being investigated. While it's difficult for the average person to grasp everything, Google's white paper summarizes it concisely as follows:

  • Zero-shot prompting

  • Few-shot prompting

  • System prompting

  • Role prompting

  • Contextual prompting

  • Step-back prompting

  • Chain of thought

  • Self-consistency

  • Tree of thoughts

For example, the second method, "Few-shot prompting," is a technique to elicit more accurate answers from a generative AI by providing it with specific examples in "question and answer pairs." The other methods also have their own theoretical backgrounds and wide ranges of application. Rather than rote memorization, it's important to first understand the concepts and then apply them. I cannot explain them all here, so I encourage you to read the original document. I recommend taking your time to learn them one by one.

 

2. Memorize Useful Words

That said, taking the first step to actually write a prompt can be quite daunting. Google has provided a list of recommended verbs, which I'd like to introduce here. Choosing from these verbs to craft your prompts might help you create good ones, so it's worth a try.

Act, Analyze, Categorize, Classify, Contrast, Compare, Create, Describe, Define, Evaluate, Extract, Find, Generate, Identify, List, Measure, Organize, Parse (especially for sentences and data grammatically), Pick, Predict, Provide, Rank, Recommend, Return, Retrieve (information, etc.), Rewrite, Select, Show, Sort, Summarize, Translate, Write

When you're unsure what to write, these verbs might give you a hint. This list includes many that I frequently use myself.

 

3. Finding Hints from Actual Examples

When you actually try out prompts, you'll find that some cases work well while others don't. The white paper summarizes these into 15 Best Practices. Here, I'll introduce an example from page 56.

Be specific about the output

Be specific about the desired output. A concise instruction might not guide the LLM enough

or could be too generic. Providing specific details in the prompt (through system or context

prompting) can help the model to focus on what’s relevant, improving the overall accuracy.

Examples:

DO:

Generate a 3 paragraph blog post about the top 5 video game consoles.

The blog post should be informative and engaging, and it should be

written in a conversational style.

DO NOT:

Generate a blog post about video game consoles.

Indeed, we tend to write simple prompts like the bad example. However, if we can add a bit more information and write like the good example, the information we receive will be better tailored to our needs. Just knowing this can change how you write prompts from now on. This white paper is full of such examples, so I highly recommend you read it for yourself.

 

How was that? I hope this serves as a reference for your prompt learning journey. Prompt engineering is still in its infancy, making it a great time to start learning. Let's conclude with a message from Google: "You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. (1)"

Stay tuned!




Copyright © 2025 Toshifumi Kuga. All right reserved

1) , "Prompt Engineering”, Google, Feb 2025

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

How can we achieve best practices for constructing multi-agent AI systems?

Lately, I've been hearing a lot about multi-agent AI systems. As someone who is always thinking about not just using these services but building them myself, I've been keen to know how to construct high-performance AI agents. Last week, Anthropic published an article titled, "How we built our multi-agent research system(1)," which describes their construction method in detail. So today, using this article as a reference, I'd like to explore the best practices for creating multi-agent AI systems with all of you. Let's get started!

 



1. Why do we need so many agents?

ChatGPT, which debuted at the end of November 2022, was a single model. Since then, several services using generative AI have appeared, but initially, most of them used a single AI. So why have we recently seen a rise in methods that connect multiple generative AIs to operate as a single system? I believe it's because it has become clear that there are limits to what a single generative AI can accomplish when faced with complex tasks. It has gradually become apparent that by connecting and integrating several agents, even complex tasks can be handled. This trend has become particularly noticeable in conjunction with the performance improvements of standalone generative AI models like Gemini 1.5 Pro and OpenAI's o3.

 

2. What kind of agent structure should we build?

The Anthropic article included a wonderful chart that I'd love to reference. The key lies with the "Lead agent" and the "sub-agents" placed beneath it.

Here is Anthropic's explanation: "The multi-agent architecture in action: user queries flow through a lead agent that creates specialized subagents to search for different aspects in parallel" . While the chart shows three sub-agents, it's a matter of course that more may be needed to handle more complex tasks.

 

3. How do you coordinate many agents?

I've described the move to multi-agent AI as if it's all upside, but it requires numerous AI agents to function as expected. Getting a desired response from a single generative AI can be quite a challenge, so is it even possible to control multiple, simultaneously operating AI agents to meet our expectations? The key seems to lie in the "prompt." In fact, the Anthropic article contains countless, very helpful methods for prompt creation. Here, I'd like to introduce two representative examples. For the rest, I highly recommend reading the original article for yourself.

"Teach the orchestrator how to delegate. In our system, the lead agent decomposes queries into subtasks and describes them to subagents. Each subagent needs an objective, an output format, guidance on the tools and sources to use, and clear task boundaries. Without detailed task descriptions, agents duplicate work, leave gaps, or fail to find necessary information.

"Guide the thinking process. Extended thinking mode, which leads Claude to output additional tokens in a visible thinking process, can serve as a controllable scratchpad. The lead agent uses thinking to plan its approach, assessing which tools fit the task, determining query complexity and subagent count, and defining each subagent’s role.

In a nutshell, I think it comes down to "describing things meticulously." Apparently, simple and short instructions like "Research the semiconductor shortage" did not work well, so it seems necessary to write prompts for multi-agent AI as meticulously as possible. I'm going to work on writing better prompts from now on.

 

What did you think? It appears that various techniques are necessary to make multi-agent AI systems operate as intended. As the performance of generative AI improves in the future, the required orchestration techniques will also change. I want to continue to stay updated and incorporate the latest cutting-edge technologies. That's all for today. Stay tuned!



Toshi Stats Co., Ltd. provides a wide range of AI-related services. Please see here for more details!

Copyright © 2025 Toshifumi Kuga. All right reserved

1) ,  "How we built our multi-agent research system”,   Anthropic,  June 13, 2025









Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.

The Cutting Edge of Prompt Engineering: A Look at Silicon Valley Startup

Hello everyone. How often do you find yourselves writing prompts? I imagine more and more of you are writing them daily and conversing with generative AI. So today, we're going to look at the state of cutting-edge prompt engineering, using a case study from a Silicon Valley startup. Let's get started.

 

1. "Parahelp," a Customer Support AI Startup

There's a startup in Silicon Valley called "Parahelp" that provides AI-powered customer support. Impressively, they have publicly shared some of their internally developed prompt know-how (1). In the hyper-competitive world of AI startups, I want to thank the Parahelp management team for generously sharing their valuable knowledge to help those who come after them. The details are in the link below for you to review, but my key takeaway from their know-how is this: "The time spent writing the prompt itself isn't long, but what's crucial is dedicating time to the continuous process of executing, evaluating, and improving that prompt."

When we write prompts in a chat, we often want an immediate answer and tend to aim for "100% quality on the first try." However, it seems the style in cutting-edge prompt engineering is to meticulously refine a prompt through numerous revisions. For an AI startup to earn its clients' trust, this expertise is essential and may very well be the source of its competitive advantage. I believe "iteration" is the key for prompts as well.

 

2. Prompts That Look Like a Computer Program

Let's take a look at a portion of the published prompt. This is a prompt for an AI agent to behave as a manager, and even this is only about half of the full version.

structures of prompts

Here is my analysis of the prompt above:

  • Assigning a persona (in this case, the role of a manager)

  • Describing tasks clearly and specifically

  • Listing detailed, numbered instructions

  • Providing important points as context

  • Defining the output format

I felt it adheres to the fundamental structure of a good prompt. Perhaps because it has been forged in the fierce competition of Silicon Valley, it is written with incredible precision. There's still more to it, so if you're interested, please view it from the link. It's written in even finer detail, and with its heavy use of XML tags, you could almost mistake it for a computer program. Incredible!

 

3. The Future of Prompt Engineering

I imagine that committing this much time and cost to prompt engineering is a high hurdle for the average business person. After learning the basics of prompt writing, many people struggle with what the next step should be.

One tip is to take a prompt you've written and feed it back to the generative AI with the task, "Please improve this prompt." This is called a "meta-prompt." Of course, the challenges of how to give instructions and how to evaluate the results still remain. At Toshi Stats, we plan to explore meta-prompts further.

 

So, what did you think? Even the simple term "prompt" has a lot of depth, doesn't it?As generative AI continues to evolve, or as methods for creating multi-AI agents advance, I believe prompt engineering itself will also continue to evolve. It's definitely something to keep an eye on. I plan to provide an update on this topic in the near future.

That's all for today. Stay tuned!

 

ToshiStats Co., Ltd. offers various AI-related services. Please check them out here!

 

Copyright © 2025 Toshifumi Kuga. All rights reserved.

  1. Prompt design at Parahelp, Parahelp, May 28, 2025

 






Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.





What Will White-Collar Jobs Be Like in 2030? What Should We Do Now?

As many of you may know, Dario Amodei has issued a warning to people. Roughly speaking, he stated, "The demand for entry-level jobs, such as those performed by new graduates, will be cut in half. This will become a reality within the next one to five years." This is shocking news, and the fact that it came from the CEO of a company actually developing generative AI has made it a global topic of discussion. In this article, I would like to delve deeper into this matter.

 

1. Dario Amodei's Warning

He is the co-founder and CEO of Anthropic, a U.S. company developing generative AI. He holds a Ph.D. in Physics from Princeton University, and from what I've seen, he strikes me more as a researcher than a business executive. I've been following his statements for the past two years, and I remember them being relatively conservative. I thought they were consistent with his researcher-like nature. However, this time he stated, "We are not keeping up with the pace of AI evolution," and "Unemployment rates will be 10% to 20%" (1), which shocked the world. I don't recall similar warnings from other frontier model development companies like OpenAI or Google DeepMind. This is why his latest statement garnered so much attention.

 

2. Current Performance of Generative AI

Currently, generative AI indeed possesses sufficient ability to handle entry-level tasks. As I mentioned before, Google Gemma 3, an open-source generative AI, achieved an accuracy of around 80% without any specific tuning for a 6-class classification task of bank customer complaints. Typically, relatively simple tasks like "Which product does this complaint relate to?" are assigned to new employees, and they learn the ropes through these assignments. However, with generative AI's performance reaching this level, management will undoubtedly lose the incentive to assign tasks to new employees at a cost. It's not yet clear whether the impact will be as significant as half of entry-level jobs disappearing, but given that even free generative AI can achieve around 80% accuracy today, a considerable impact is inevitable.

 

3. So, What Should We Do?

There is a division of opinion among experts regarding when AGI (Artificial General Intelligence), with capabilities equivalent to human experts, will appear. The most common estimate seems to be around 2030, but honestly, it's not clear. If so, we have about five years. In any case, we need to adapt our skills to the advent of AGI. Past computers could not be instructed or managed without a computer language. However, with the emergence of ChatGPT in November 2022, generative AI can now be instructed using natural language—"prompts." However, prompting is not a simple matter. It's an extremely delicate process of finely controlling the behavior of generative AI to precisely fit one's needs. Therefore, it's not uncommon to write prompts exceeding 20 to 30 lines. While I cannot delve into the detailed techniques here, it is certainly a skill that requires logical prompt writing. Even though prompts can be written in English or Japanese, acquiring this skill requires time and individual training. Given that open-source and free generative AIs are rapidly improving in performance, it is imperative for us, as users, to learn "prompting," the method of controlling them, regardless of our position or industry.

 

What do you think? It's good that Dario Amodei's warning has sparked more active discussion. As I mentioned in my previous blog post, generative AI is on the verge of implementing recursive self-improvement, gaining the ability for computers to improve themselves. The evolution of generative AI will accelerate further in the future. I believe the time has come to thoroughly learn prompting and prepare for the emergence of AGI. Discussions about AI and employment will continue globally. ToshiStats will keep you updated. Stay tuned!

 
 

ToshiStats Co., Ltd. offers various AI-related services. Please check them out here!



Copyright © 2025 Toshifumi Kuga. All right reserved

1) AI company's CEO issues warning about mass unemployment, CNN, May 30, 2025

 

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.








Google DeepMind Announces "AlphaEvolve," Hinting at an Intelligence Explosion!

Google DeepMind has unveiled a new research paper today, introducing "AlphaEvolve" (1), a coding agent that leverages evolutionary computation. It's already garnering significant attention due to its broad applicability and proven successes, such as discovering more efficient methods for matrix calculations in mathematics and improving efficiency in Google's data centers. Let's dive a little deeper into what makes it so remarkable.

 

LLMs Empowered with Evolutionary Computation

In a nutshell, "AlphaEvolve" can be described as an "agent that leverages LLMs to the fullest to evolve code." To briefly touch upon "evolutionary computation," it's an algorithm that mimics the process of evolution in humans and living organisms to improve systems, replicating genetic crossover and mutation on a computer. Traditionally, the function responsible for this, called an "Operator," had to be set by humans. "AlphaEvolve" automates the creation of Operators with the support of LLMs, enabling more efficient code generation. That sounds incredibly powerful! While evolutionary computation itself isn't new, with practical applications dating back to the 2000s, its combination with LLMs appears to have unlocked new capabilities. The red box in the diagram below indicates where evolutionary computation is applied.

 

2. Continued Evolution with Meta-Prompts

I'm particularly intrigued by the "prompt_sampler" mentioned above because this is where "meta-prompts" are executed. The paper explains, "Meta prompt evolution: instructions and context suggested by the LLM itself in an additional prompt-generation step, co-evolved in a separate database analogous to the solution programs." It seems that prompts are also evolving! The diagram below also shows that accuracy decreases when meta-prompt evolution is not applied compared to when it is.

This is incredible! With an algorithm like this, I'd certainly want to apply it to my own tasks.

 

3. Have We Taken a Step Closer to an Intelligence Explosion?

Approximately a year ago, researcher Leopold Aschenbrenner published a paper (2) predicting that computers would surpass human performance by 2030 as a result of an intelligence explosion. The graph below illustrates this projection. This latest "AlphaEvolve" can be seen as having acquired the ability to improve its own performance. This might just be a step closer to an intelligence explosion. It's hard to imagine the outcome of countless AI agents like this, each evolving independently, but it certainly feels like something monumental is on the horizon. After all, computers operate 24 hours a day, 365 days a year, so once they acquire self-improvement capabilities, their pace of evolution is likely to accelerate. He refers to this as "recursive self-improvement" (p47).

 



What are your thoughts? The idea of AI surpassing humans can be a bit challenging to grasp intuitively, but just thinking about what AI agents might be like around 2027 is incredibly exciting. I'll be sure to provide updates if a sequel to "AlphaEvolve" is released in the future. That's all for now. Stay tuned!

 


1) AlphaEvolve: A coding agent for scientific and algorithmic discovery Alexander Novikov* , Ngân Vu˜ * , Marvin Eisenberger* , Emilien Dupont* , Po-Sen Huang* , Adam Zsolt Wagner* , Sergey Shirobokov* , Borislav Kozlovskii* , Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli and Matej Balog* Google DeepMind ,16 May, 2025

2) S I T U AT I O N A L AWA R E N E S S  The Decade Ahead, Leopold Aschenbrenner, June 2024


 


Copyright © 2025 Toshifumi Kuga. All right reserved

Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes, the software and the contents.

We Built a Customer Complaint Classification Agent with Google's New AI Agent Framework "ADK"

On April 9th, Google released a new AI agent framework called "ADK" (Agent Development Kit). It's an excellent framework that incorporates the latest multi-agent technology while also being user-friendly, allowing implementation in about 100 lines of code. At Toshi Stats, we decided to immediately try creating a customer complaint classification agent using ADK.

 

1. Customer Complaint Classification Task

Banks receive various complaints from customers. We want to classify these complaints based on which financial product they concern. Specifically, this is a 6-class classification task where we choose one from the following six financial products. Random guessing would yield an accuracy below 20%.

Financial products to classify

 

2. Implementation with ADK

Now, let's move on to the ADK implementation. We'll defer to the official documentation for file structure and other details, and instead show how to write the AI agent below. The "instruction" part is particularly important; writing this carefully improves accuracy. This is what's known as a "prompt". In this case, we've specifically instructed it to select only one from the six financial products. Other parts are largely unchanged from what's described in tutorials, etc. It has a simple structure, and I believe it's not difficult once you get used to it.

AI agent implementation with ADK

 

3. Accuracy Verification

We created six classification examples and had the AI agent provide answers. In the first example, I believe it answered "student loan" based on the word "graduation." It's quite smart! Also, in the second example, it's presumed to have answered "mortgage " based on the phrase "prime location." ADK has a built-in UI like the one shown below, which is very convenient for testing immediately after implementation.

ADK user interface

The generative AI model used this time, Google's "gemini-2.5-flash-04-17," is highly capable. When tasked with a 6-class classification problem using 100 actual customer complaints received by a bank, it typically achieves an accuracy of over 80%. For simple examples like the ones above, it wouldn't be surprising if it achieved 100% accuracy.

 

So, what did you think? This was our first time covering ADK, but I feel it will become popular due to its high performance and ease of use. Combined with A2A(2), which was announced by Google around the same time, I believe use cases will continue to increase. We're excited to see what comes next! At Toshi Stats, we will continue to build even more advanced AI agents with ADK. Stay tuned!

 



1) Agent Development Kit,  Google, April 9th, 2025
2) Agent2Agent.  Google, April 9th, 2025

 



Notice: ToshiStats Co., Ltd. and I do not accept any responsibility or liability for loss or damage occasioned to any person or property through using materials, instructions, methods, algorithms or ideas contained herein, or acting or refraining from acting as a result of such use. ToshiStats Co., Ltd. and I expressly disclaim all implied warranties, including merchantability or fitness for any particular purpose. There will be no duty on ToshiStats Co., Ltd. and me to correct any errors or defects in the codes and the software.